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Abstract : This note corrects an error in an example in “Meetings

with Costly Participation” (AER 90(4), 927-943). It characterizes

the set of equilibria for the example under the assumptions in the

paper, shows that in all the equilibria an interval of moderate po-

sitions is devoid of participants, and provides assumptions under

which the result as originally stated is correct.

Our paper Osborne, Rosenthal, and Turner (2000) studies the strategic

game in which each of a set of players chooses whether to participate in a

decision-making process to select a policy, modeled as a point in R
`. Each

player i has a favorite policy xi. The outcome of an action profile a is a

compromise m(a) among the favorite policies of the players j for whom aj

is “participate”. Player i’s payoff is v(xi − m(a)) − c if she participates and

v(xi − m(a)) if she does not, where for each d ∈ R
`, v(αd) is decreasing in α

for α ≥ 0. If v(z) depends only on ‖z‖, we say that v is symmetric, and (with

a slight abuse of notation) denote its value v(‖z‖).
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One of our main results (Proposition 2) is that if the function v is concave

and symmetric then there are functions z and z (which we define explicitly1)

such that in any Nash equilibrium in which k ≥ 2 players participate, the

distance between the compromise and the favorite position of any participant

is at least z(k) and the distance between the compromise and the favorite

position of any nonparticipant is at most z(k). We summarize this conclusion

as saying that “Only players whose favorite positions are sufficiently far from

the compromise participate” and “only players whose favorite positions are

sufficiently close to the compromise do not participate” (p. 929). We study

in detail an example in which the policy space is one-dimensional (` = 1) and

the compromise m(a) is the median of the participants’ favorite positions.

Francesco De Sinopoli and Giovanna Iannantuoni (2004) make two points.

First, they show that our characterization of the equilibria in the example

(given in our Proposition 3) errs in claiming that under our stated conditions

no equilibrium exists in which the number of participants is odd. Proposi-

tion 3∗ below provides a correct characterization of the equilibria under our

stated assumptions; the subsequent corollary strengthens the assumptions to

1The definition of β(k) in the paper is erroneous. The condition x 6= m(X) in the set over
which the sup is taken should be replaced by the condition x 6= m(X \{x}). (We are grateful
to Francesco De Sinopoli and Giovanna Iannantuoni for pointing out that Proposition 2 fails
under the definition of β(k) in the paper. Note that in the definitions of both β(k) and β(k),

the set X ranges over all possible k-element subsets of the policy space R
`. In particular,

the positions in X are not restricted to be favorite positions of the players.) This change in
the definition of β(k) requires that the proof for the case that j attends in Proposition 2 be
modified as follows. Consider an equilibrium in which j attends. Then xj 6= m(Y \ {xj})
(given c > 0 and v(z) ≤ 0 for all z). Now, if β(k) = ∞ we have z(k) = 0, so certainly
‖xj − m(Y )‖ ≥ z(k). If β(k) is finite, then xj 6= m(Y ), so that by the definition of β(k) we
have ‖xj −m(Y \ {xj})‖ ≤ β(k)‖xj −m(Y )‖. (Note the following typographic errors in the
proof of Proposition 2: yj should be xj in the first displayed equation and β(k) and β(k)
should be interchanged throughout the proof.)
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make the original characterization correct.

Second, De Sinopoli and Iannantuoni’s example highlights the fact that

when z(k) = 0 or z(k) = ∞, our interpretation of Proposition 2 as saying

that all participants are “extremists” and all nonattendees are “moderates”

is strained. Indeed, in any equilibrium of the example in which the number

of participants is odd, the position of one participant is exactly equal to the

compromise.

Proposition 3∗ below shows that all equilibria of games satisfying the as-

sumptions of Proposition 3 nevertheless involve an interval of moderate posi-

tions devoid of participants. The interval is not centrally located among the

set of participants, as it is for equilibria with an even number of participants,

but lies on one side of the compromise. (Refer to Figure 1. In De Sinopoli and

Iannantuoni’s example, the interval lies between −11 and 1.)

In the paper we define y by the condition −v(1

2
y) = c. Define y to be the

policy such that v(1

2
y)− v(y) = c. (On page 934, the paper defines y = 2z(k),

without noting that when the compromise function is the median, z(k) is the

same for all even values of k.) If v is strictly concave, then y > y. For any

z with 0 < z ≤ 1

2
y, we define ∆(z) to be the unique solution of the equation

v(∆(z)) − v(z + ∆(z)) = c. Extend the definition of ∆ to all z > 0 by letting

∆(z) = 0 if z > 1

2
y, and define the function δ by δ(z) = z + ∆(z) for z > 0.

We have δ(z) = 1

2
y for z ≥ 1

2
y, and δ is decreasing on (0, 1

2
y).

PROPOSITION 3∗: Suppose that the policy space is one-dimensional, the com-

promise function is the median, the valuation function is strictly concave and

symmetric, the list of all the players’ favorite positions is symmetric, and the

3



default policy is 0. An action profile with at least one participant is an equi-

librium if and only if either

• the number of participants is even, the distance between the favorite po-

sitions xh and xi > xh of the two central participants h and i is at least

y, the distance between xh+1 and xi−1 is at most y if i ≥ h + 2, and

every player whose position is less than xh −∆(1

2
(xi−xh)) or more than

xi + ∆(1

2
(xi − xh)) participates

• or the number of participants is odd and at least three and the positions

xh < xi < xj of the three central participants satisfy |xi−
1

2
(xj+xh)| ≥

1

2
y

and either

· xi − xh > xj − xi and xi − xh ≥ ∆(1

2
(xj − xi))

· no player has a favorite position between xh and xi − y

· every player whose favorite position is at most xh or greater than

xi + δ(1

2
(xj − xi)) participates

or

· xj − xi > xi − xh and xj − xi ≥ ∆(1

2
(xi − xh))

· no player has a favorite position between xi + y and xj

· every player whose favorite position is less than xi − δ(1

2
(xi − xh))

or at least xj participates.

Equilibria in which the number of participants is odd, an example of which

is illustrated in Figure 1, share qualitative properties with equilibria in which
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the number of participants is even: all players with sufficiently extreme posi-

tions participate and an interval of moderate positions is devoid of participants.

Specifically, for an equilibrium with an odd number of participants in which xh

is further from xi than is xj , all players with favorite positions less than xh or

greater than xi+δ(1

2
(xj−xi)) participate, and all players with favorite positions

from xh to xi do not participate. Note that the participation/nonparticipation

boundary is sharper on one side of the central participant for equilibria with

an odd number of participants than it is for equilibria with an even number

of participants. Note also that the lower bound on the length of the interval

of moderate positions devoid of participants is larger for an equilibrium with

an odd number of participants (it is2 y) than it is for an equilibrium with an

even number of participants (for which it is y).

median
Gap

All participate All participate

equal number of
participants on each side

Figure 1. The structure of an equilibrium when the compromise function is the median, the
valuation function is concave and symmetric, and the number of participants is odd. Each
disk represents a participant’s favorite policy and each circle represents a nonparticipant’s
favorite policy.

The following logic lies behind the conditions for an equilibrium with an

odd number of pariticipants. If player i withdraws, the outcome changes from

xi to the mean of xh and xj , so that xi has to be far enough from this mean

to make player i’s participation worthwhile. This condition implies that xh <

2The conditions xh < xi < xj and |xi−
1

2
(xj +xh)| ≥ 1

2
y imply that the distance between

xi and the more distant of xh and xj exceeds y.
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xi − y. Suppose that xh is further from xi than is xj . (If xj is further from xi

than is xj , symmetric arguments apply.) If player h withdraws, the outcome

changes from xi to the mean of xi and xj , so that for h’s participation to be

worthwhile, xi has to be remote enough from xh, given the distance between

xi and xj . If a player, say k, were to have a favorite position between xh

and xi − y, then she would not participate (otherwise xh would not be the

position of the closest participant to i’s left), in which case her switching to

participation would change the outcome from xi to 1

2
(xk + xi), increasing her

payoff. Now consider a player whose favorite position is less than xh. If she

does not participate, then her switching to participation changes the outcome

from xi to the mean of xh and xi; given that i’s participation is optimal, this

switch to participation increases her payoff. Finally, a nonparticipant whose

favorite position exceeds xi + δ(1

2
(xj − xi)) increases her payoff by switching

to participation.

The fact that in any equilibrium in which the number of participants is

odd either no player has a favorite position between xh and xi−y or no player

has a favorite position between xi + y and xj (depending on which of xh and

xj is further from xi) leads to the observation that for some specifications of

the individuals’ favorite positions, no equilibrium exists in which the number

of participants is odd.

COROLLARY: If either (a) the players’ favorite positions are equally-spaced

or (b) the distance between every pair of adjacent positions is at most y − y,

then the game has no Nash equilibrium in which the number of participants is

odd.
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Proof. The proof of (a) is contained in the proof of Proposition 3 in the paper.

Part (b) follows from the fact that in any equilibrium with an odd number of

participants, the distance between the position xi of the middle participant

and the position of the more distant of her two neighbors, say xh, exceeds y,

and any player whose position is between xh and xi − y must participate. �

Proof of Proposition 3∗. The argument for an equilibrium with an even

number of participants is in the paper. Consider an equilibrium with an odd

number of participants.

We first argue that a strategy profile that satisfies the conditions in the

result for the case in which xi −xh ≥ xj −xi is an equilibrium. The argument

for the case in which xi − xh ≤ xj − xi is symmetric.

The outcome of such a strategy profile is xi. If i withdraws then the

outcome changes to 1

2
(xh + xj), so that i’s participation is optimal if

−c ≥ v(|xi −
1

2
(xh + xj)|)

or

|xi −
1

2
(xh + xj)| ≥

1

2
y,

one of the conditions in the result. (As noted in footnote 2, this condition

implies that xi − xh > y and hence xi − xh > y.)

If j withdraws then the outcome changes from xi to 1

2
(xh + xi), so that j’s

participation is optimal if

v(|xj − xi|) − c ≥ v(|xj −
1

2
(xh + xi)|),

or

−c ≥ v(|xj −
1

2
(xh + xi)|) − v(|xj − xi|).
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Now, |xj−
1

2
(xh+xi)|−|xj−xi| ≥ |xi−

1

2
(xh+xj)| because |xj−xi| ≤ |xh−xi|.

Thus the concavity of v and the fact that i cannot profitably withdraw means

that j cannot profitably withdraw.

If h withdraws then the outcome changes from xi to 1

2
(xi +xj), so that her

participation is optimal if

v(|xi − xh|) − c ≥ v(|1
2
(xi + xj) − xh|),

or

v(|xi − xh|) − v(|1
2
(xi + xj) − xh|) ≥ c,

or

|xi − xh| ≥ ∆(1

2
|xj − xi|),

given the concavity of v. This condition also is given in the result.

Now consider a player whose favorite position is at most xh. For a strategy

profile that satisfies the conditions in the result, she participates. If she with-

draws, the change in the outcome is the same as the change in the outcome

when h withdraws. Given the concavity of v, her participation is thus optimal.

A player whose favorite position lies between xi − y (which exceeds xh)

and xi, like any player whose favorite position lies between xh and xi, does

not participate in a strategy profile that satisfies the conditions in the result.

If such a player, say k, switches to participation, the outcome changes from xi

to 1

2
(xk + xi); given the definition of y, the deviation does not make k better

off.

Finally, any participant whose favorite position is at least xj is not better

off withdrawing for the same reason that j is not better off withdrawing, and a
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nonparticipant whose favorite position is at least xj and at most xi + δ(1

2
(xj −

xi)) is not better off participating, given the definition of δ and the fact that

her switching to participation changes the outcome from xi to 1

2
(xi + xj).

We now argue that any equilibrium in which the number of participants is

odd satisfies the conditions in the result.

First we argue that no action profile in which a single player participates

is an equilibrium. If the single participant in such a profile is i, then we need

v(|xi|) ≤ −c for i’s participation to be optimal. In particular, xi 6= 0. But then

the player whose position is symmetric with xi about 0 is better off switching

to participation, given the strict concavity of v.

Now consider an action profile with at least three participants. Let i be the

central participant, and h and j the participants closest to i on each side of

xi, with xh < xi < xj . If xi − xh = xj − xi then i’s withdrawal does not affect

the outcome, so that her participation is not optimal. Thus xi − xh 6= xj − xi.

Suppose that xi − xh > xj − xi. (The case in which xj − xi > xi − xh is

symmetric.)

If i withdraws then the outcome changes to 1

2
(xh + xj). Thus for i’s par-

ticipation to be optimal we require

v(|xi −
1

2
(xh + xj)|) ≤ −c

or

|xi −
1

2
(xh + xj)| ≥

1

2
y.

If h withdraws then the outcome changes from xi to 1

2
(xi + xj), so that for
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her participation to be optimal we require

v(|xi − xh|) − c ≥ v(|1
2
(xi + xj) − xh|),

or

v(|xi − xh|) − v(|1
2
(xi + xj) − xh|) ≥ c,

or

|xi − xh| ≥ ∆(1

2
|xj − xi|).

Now consider a player, say k, whose favorite position is at most xh. If this

player does not participate, her switching to participation changes her payoff

from v(|xi−xk|) to v(|1
2
(xh +xi)−xk|)−c. Now, i’s switch to nonparticipation

changes i’s payoff from −c to v(|xi−
1

2
(xh +xj)|) and does not make her better

off, so −c ≥ v(|xi −
1

2
(xh + xj)|). Further, |xi − xk| − |1

2
(xh + xi) − xk| >

|xi −
1

2
(xh + xj)|, so that the strict concavity of v implies that v(|xi − xk|) −

v(|1
2
(xh + xi)− xk|) > v(0)− v(|xi −

1

2
(xh + xj)|) = −v(|xi −

1

2
(xh + xj)|). We

conclude that v(|xi − xk|) − v(|1
2
(xh + xi) − xk|) > c, so that k’s switching to

participation increases her payoff. Thus every player whose favorite position

is at most xh participates in an equilibrium.

Now consider a player, say k, whose favorite position is between xh and

xi − y (which exceeds xh by an earlier argument). By assumption this player

does not participate, because xh is the favorite position of the participant

closest to xi on the left. If she switches to participation, then the outcome

changes from xi to 1

2
(xk+xi), a distance greater than 1

2
y. Thus by the definition

of y, player k is better off switching to participation. We conclude that for the

configuration to be an equilibrium, no such player must exist.
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Finally, consider a player, say k, whose favorite position exceeds xi +

δ(1

2
(xj − xi)). If she does not participate then her payoff is v(|xk − xi|). If she

switches to participation, her payoff becomes v(|xk − 1

2
(xj + xi)|) − c. Thus

the increase in her payoff if she switches to participation is

v(|xk −
1

2
(xj + xi)|) − c − v(|xk − xi|),

which is positive because xk > xi + δ(1

2
(xj − xi)). Hence every such player

participates in any equilibrium. �
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