
Manual for sgamex.sty
by

Martin J. Osborne
martin.j.osborne@gmail.com

For Version 1.0, 2020-2-7

1. Introduction

sgamex.sty is a LATEX style file for drawing strategic games. The latest ver-
sion is available at
https://www.economics.utoronto.ca/osborne/latex.
The style reimplements the game environment from sgame.sty to avoid in-
compatibilities with other packages, in particular array.sty. (It does not
currently implement the game* environment in sgame.sty.)

One small inconvenience remains: because of a clash between the
hhline and beamer packages, if you are using sgamex with beamer you need
to add the following lines just before \begin{document}:

\makeatletter

\let\zz\reset@color

\def\reset@color{\kern\z@\zz}

\makeatother

(See this page for details.)
The core of sgamex.sty was written by Enrico Gregorio (egreg) in re-

sponse to a question on StackExchange. The method of saving and restor-
ing the value of \arrayrulecolor is due to David Carlisle (see his answer
on this page). I am grateful to Enrico and David for their code.

The only reason to use sgame.sty or its cousin sgamevar.sty rather than
sgamex.sty is for the game* environment.

Please notify me of bugs.

2. Installation

• Put sgamex.sty in a directory from which TEX reads input
files. (For MiKTeX the directory might be something like
\miktex\localtexmf\tex\latex\ or a subdirectory thereof.)

• Let TEX know that sgamex has arrived. (In MiKTeX, “refresh the file-
name database”.)

1

https://www.economics.utoronto.ca/osborne/latex
https://tex.stackexchange.com/questions/404872/are-beamer-hhline-and-tablexcolor-incompatible
https://tex.stackexchange.com/questions/512905/is-there-an-alternative-to-sgame-compatible-with-array
https://tex.stackexchange.com/questions/527455/get-current-value-of-arrayrulecolor-for-a-colortbl

• To use the package in a document, put the line \usepackage{sgamex}

in the preamble. It loads the xcolor package with the option table,
so if your document loads another package that loads xcolor without
an option, you need to load sgamex first or to load xcolor early with
the table option.

3. Description

The style defines the environment game, which can be used in four ways,
depending on the values of its optional arguments.

3.1 No optional argument

Without any optional arguments, its syntax is

\begin{game}{number-of-rows}{number-of-columns}game-body\end{game}

where number-of-rows is the number of rows in the game and number-of-
columns is the number of columns. game-body consists of rows in the style of
the rows in a tabular environment, & “tabbing” to a new cell and \\ ending
a row.

The following example is illustrated in Figure 1.

\def\sgtextcolor{blue}%

\def\sglinecolor{red}%

\begin{figure}[htb]\hspace*{\fill}%

\begin{game}{2}{2}

& \(L\) & \(R\)\\

\(T\) &\(2,2\) &\(100,35\)\\

\(B\) &\(3,0\) &\(350,16\)

\end{game}

\hspace*{\fill}%

\caption[]{A two row, two column strategic game.}

\end{figure}

L R
T 2, 2 100, 35
B 3, 0 350, 16

Figure 1. A two row, two column strategic game.

2

• Note that the width of every column is the same and the content of
each cell of the table is centered vertically within the cell. (Regarding
the latter, see section 5.)

• As in a LATEX tabular environment, spaces on each side of the text in
each cell in the input file are ignored. (Thus in the tex file you can, if
you wish, align the columns using spaces or tabs, as I have done.)

• If all the text in every cell of your payoff matrix is in math mode, you
can avoid typing all the \(’s and \)’s by setting \gamemathtrue, either
by putting this command in your file, or by changing \gamemathfalse

to \gamemathtrue in the style file. Under this setting, all text in every
cell of the payoff matrix is automatically in math mode. (Note that
even if the text in the cells consists only of comma-separated pairs of
numbers, it should still be in math mode, otherwise the spacing is not
correct.)

3.2 One optional argument: game label

With one optional argument, the syntax of the game environment is

\begin{game}{number-of-rows}{number-of-columns}[game-label]game-body
\end{game}

where number-of-rows is the number of rows in the game, number-of-columns
is the number of columns, and game-label is a label for the game that is cen-
tered beneath the game. (The sense in which it is centered may be changed
by setting \irpawcgltrue or \irplwcgltrue—see section 9.) This case is
useful if two or more games are positioned side-by-side, and each requires
a label.

\begin{figure}[htb]\hspace*{\fill}%

\begin{game}{2}{2}[\(A\)]

& \(L\) & \(R\)\\

\(a\) &\(2,2,1\) &\(0,3,0\)\\

\(b\) &\(3,0,2\) &\(1,1,4\)

\end{game}\hspace*{20mm}%

\begin{game}{2}{2}[\(B\)]

& \(L\) & \(R\)\\

\(a\) &\(2,3,0\) &\(0,4,1\)\\

\(b\) &\(3,1,2\) &\(1,2,0\)

\end{game}\hspace*{\fill}%

3

\caption[]{A three player strategic game, in which

player~3 chooses \(A\) or \(B\).}

\end{figure}

L R
a 2, 2, 1 0, 3, 0
b 3, 0, 2 1, 1, 4

A

L R
a 2, 3, 0 0, 4, 1
b 3, 1, 2 1, 2, 0

B

Figure 2. A three player strategic game, in which player 3 chooses A or B.

3.3 Two optional arguments: player labels

In the case of two optional arguments, the syntax of the game environment
is

\begin{game}{number-of-rows}{number-of-columns}[row-player-label]
[column-player-label]game-body\end{game}

where number-of-rows is the number of rows in the game, number-of-columns
is the number of columns, and row-player-label and column-player-label are
the names of the players.

\begin{figure}[htb]\hspace*{\fill}%

\begin{game}{2}{3}[Player~1][Player~2]

& \(L\) & \(M\) & \(R\)\\

\(T\) &\(2,2\) &\(2,0\) &\(0,3\)\\

\(B\) &\(3,0\) &\(0,9\) &\(1,1\)

\end{game}\hspace*{\fill}%

\caption[]{A two row, three column strategic game with

player labels.}

\end{figure}

See Figure 3 for the result.

3.4 Three optional arguments: player labels and game label

The case of three optional arguments combines the two previous cases: the
syntax of the game environment is

4

Player 2

L M R

Player 1 T 2, 2 2, 0 0, 3
B 3, 0 0, 9 1, 1

Figure 3. A two row, three column strategic game with player labels.

\begin{game}{number-of-rows}{number-of-columns}[row-player-label]
[column-player-label][game-label]game-body\end{game}

where number-of-rows is the number of rows in the game, number-of-columns
is the number of columns, row-player-label and column-player-label are the
names of the players, and game-label is a label for the game.

\begin{figure}[htb]\hspace*{\fill}%

\begin{game}{2}{3}[Player~1][Player~2][\(A\)]

& \(L\) & \(M\) & \(R\)\\

\(T\) &\(2,2\) &\(2,0\) &\(0,3\)\\

\(B\) &\(3,0\) &\(0,9\) &\(1,1\)

\end{game}\hspace*{\fill}%

\caption[]{A two row, three column strategic game with

player labels and a label.}

\end{figure}

See Figure 4 for the result.

Player 2

L M R

Player 1 T 2, 2 2, 0 0, 3
B 3, 0 0, 9 1, 1

A

Figure 4. A two row, three column strategic game with player labels and a label.

4. Cell formatting

You may regard the format of the payoffs in the first column of the game in
Figure 5 as unsatisfactory, and the formatting in the left panel of Figure 6 as
superior. This latter formatting is implemented by adding “phantom” mi-
nus signs before the “2” in the top left cell and before the “3” in the bottom

5

left cell. The top left cell, for example, is entered as \(-2,2\).
(\phantom{<x>} leaves a space whose size is equal to the size of the object
<x>.)

L R
T −2, 2 0, 3
B 3,−4 1, 1

Figure 5. A strategic game.

You may want to consider other formats. The right panel of Figure 6
shows an alternative. This format is achieved be entering the element of
each cell as

\begin{array}{c}#1\\#2\end{array},

where #1 is player 1’s payoff and #2 is player 2’s payoff. (Actually, I defined
the macro

\def\stackedpayoffs#1#2{%

\begin{array}{c}#1\\#2\end{array}

}

and entered each element as \stackedpayoffs{#1}{#2}. I set \gamestretch
to be 2.1 to improve the appearance of the game.)

L R
T −2, 2 0, 3
B 3,−4 1, 1

L R

T
−2

2

0

3

B
3

−4

1

1

Figure 6. Two alternative presentations of the game in Figure 5.

Figure 7 shows two more alternatives. The one on the left is achieved by
entering the element of each cell as

\begin{array}{rl}#1&\\\end{array},

6

and the one on the left differs only in that there is a in front of
player 2’s payoff in the top left cell, player 1’s payoff in the bottom left cell,
and player 2’s payoffs in both of the right cells.

L R

T
−2

2

0

3

B
3

−4

1

1

L R

T
−2

2

0

3

B
3

−4

1

1

Figure 7. Two additional presentations of the game in Figure 5.

5. Vertical position of text within cells

The vertical distance between the lines at the top and bottom of a
row in LATEX’s tabular environment is equal to \arraystretch times
\baselineskip. The baseline of the text in each cell is placed 30% of the
distance from the bottom line. Thus if \arraystretch is large relative to
the height of the text, the text is not near the middle of the row. (See the
left panel of Figure 8; or try setting \arraystretch equal to 5 and process a
document with a tabular environment.) (See the definitions of \strutbox
and of \@array in latex.ltx.)

7

sgame.sty makes the vertical distance between the lines at the top and
bottom of a row of a game the same (\arraystretch times \baselineskip),
but places the baseline of the text in each cell so that the distances above and
below an upper case I placed on the baseline are equal. (See the right panel
of Figure 8.) (If you’d like to use another character, define this character to
be \sg@alignchar.)

AygIx
0.3d

0.7d

tabular environment

d AygIx
x

x

game environment

Figure 8. Vertical positioning of text within cells in the tabular and game environments.

If the height of the text in a cell exceeds \arraystretch times
\baselineskip, then the height of the row is increased to accommodate the
text (just as the distance between lines of text is increased to accommodate
large text). The result is that the lines at the top and bottom of the row touch
the top and bottom of the text, and this row is taller than the others. To im-
prove the appearance of the table you may want to increase \gamestretch

(analogous to \arraystretch), to put some white space above and below
your oversized text.

6. Thick lines

To change the width of the cell boundaries, set \sgrulewidth

(by writing something like \sgrulewidth2mm or, if you pre-
fer, \setlength{\sgrulewidth}{2mm}). In addition, you may
need to stretch the game vertically to accommodate the thicker
lines. To do so, set \gamestretch (by writing something like
\renewcommand{\gamestretch}{2}). Here’s an example.

\def\sgtextcolor{blue}%

8

\def\sglinecolor{red}%

\renewcommand{\gamestretch}{2}

\sgrulewidth2mm

\begin{figure}[htb]\hspace*{\fill}%

\begin{game}{2}{2}

& \(L\) & \(R\)\\

\(T\) &\(2,2\) &\(100,35\)\\

\(B\) &\(3,0\) &\(350,16\)

\end{game}\hspace*{\fill}%

\caption[]{Thick lines.}

\end{figure}

L R

T 2, 2 100, 35

B 3, 0 350, 16

Figure 9. Thick lines.

7. Crossing out actions

To create Figure 10, add \usepackage{pstricks,pst-node} to the pream-
ble of your document, define a couple of macros specifying what the strike-
out lines should look like, add some node labels to the game, and specify
how the nodes should be connected. The only difficulty comes in getting
the lengths of the lines right. I have been unable to get the parameters to
work as they are described in Tim van Zandt’s manual, but with the help
of BaKoMa Word it’s easy to fiddle around with them until the lines are the
way you want them. The code for this game follows the figure.

L R
T 1, 1 2, 2
B 2, 2 3, 3

Figure 10. Crossing out actions in a strategic game.

9

\def\sgtextcolor{black}%

\def\sglinecolor{black}%

% define the strikeout lines

\newcommand\strike[2]{%

\ncline[linewidth=1.2pt,nodesep=8pt]{#1}{#2}}

\newcommand\redStrike[2]{%

\ncline[linewidth=1.2pt,nodesep=-14pt,linecolor=red]{#1}{#2}}

\begin{game}{2}{2}

&\rnode[t]{a12}{\(L\)} &\(R\)\\

\Rnode[href=20]{a21}{\(T\)} &\(1,1\) &\Rnode{a23}{\(2,2\)}\\

\(B\) &\rnode[b]{a32}{\(2,2\)} &\(3,3\)

\end{game}

% specify the nodes to be connected

\strike{a21}{a23}

\redStrike{a12}{a32}

8. Coloring cells

The style uses the colortbl package, so you can use any of the features
that colortbl provides. For example, you can color a cell by adding
\cellcolor{<color>} before its contents, as in the following example; the
output is in Figure 11.

\renewcommand{\gamestretch}{1.5}

\begin{figure}[htb]\hspace*{\fill}%

\begin{game}{2}{2}

&\(L\)&\(R\)\\

\(T\)&\cellcolor{yellow}\(1,1\)&\(2,2\)\\

\(B\)&\(3,0\)&\(0,3\)\\

\end{game}\hspace*{\fill}%

\caption[]{A game with a colored cell.}\label{f:coloredCell}

\end{figure}

9. Parameters

\gamestretch: a number that controls the spacing between rows, like
\arraystretch for tables. Possible values: positive real numbers. Default:

10

L R

T 1, 1 2, 2

B 3, 0 0, 3

Figure 11. A game with a colored cell.

value of \arraystretch when sgame.sty is loaded (1 in standard styles).
Example: \renewcommand{\gamestretch}{2}.

\sgcolsep: horizontal padding within cells. Possible values: any dimen-
sion. Default: value of \tabcolsep when sgame.sty is loaded. Example:
\sgcolsep=10pt.

\sglabelsep: vertical space between game and label. Possible values: any
dimension. Default: 5pt. Example: \sglabelsep=10pt.

\irpawcgltrue (“include row player actions when centering game label”):
causes game label to be centered under box consisting of row player actions
and payoff matrix. Default: \irpawcglfalse (i.e. game label is centered
under box consisting only of payoff matrix). Example: \irpawcgltrue.

\irplwcgltrue (“include row player label when centering game label”):
causes game label to be centered under box consisting of row player label,
row player actions, and payoff matrix. (Is overridden by \irpawcgltrue.)
Default: \irplwcglfalse (i.e. game label is centered under payoff matrix).
Example: \irplwcgltrue.

\gamemathtrue: put all text in cells in payoff matrix in math mode. Default:
\gamemathfalse. Example: \gamemathtrue.

\sglinecolor: color of lines around payoffs. Default: black. Example:
\def\sglinecolor{lightgray}.

\sgtextcolor: color of text in game (action labels, payoffs, player labels).
Default: black. Example: \def\sgtextcolor{blue}.

11

10. History

Version 1

2020/2/7 First version (reimplementation of game environment in
sgame.sty, the first version of which was written in December 1993).

12

	1 Introduction
	2 Installation
	3 Description
	3.1 No optional argument
	3.2 One optional argument: game label
	3.3 Two optional arguments: player labels
	3.4 Three optional arguments: player labels and game label

	4 Cell formatting
	5 Vertical position of text within cells
	6 Thick lines
	7 Crossing out actions
	8 Coloring cells
	9 Parameters
	10 History

